

7.1 Let (\mathcal{M}, g) be a Riemannian manifold and $p \in \mathcal{M}$. Let (x^1, \dots, x^n) be normal coordinates centered at p . Show that the components of the metric g satisfy at $p = (0, \dots, 0)$ the following cyclic identity for any $i, j, k, l \in \{1, \dots, n\}$:

$$\partial_i \partial_j g_{kl}|_p + \partial_j \partial_k g_{il}|_p + \partial_k \partial_l g_{ij}|_p = 0.$$

(Hint: recall that the Gauss lemma is equivalent to the statement that, in normal coordinates, $g_{ij}x^j = \delta_{ij}x^j$. Differentiate this relation a few times and evaluate at $(0, \dots, 0)$.)

Manipulating the above formula, show that

$$\partial_i \partial_j g_{kl}|_p = \partial_k \partial_l g_{ij}|_p.$$

7.2 In this exercise, we will compute the expression in polar coordinates of the three model geometries in 2 dimensions (this was originally part of the last exercise last week).

- (a) As a warm up, express in polar coordinates centered at the origin the flat metric g_E on \mathbb{R}^2 .
- (b) Let $(\mathbb{H}^2, g_{\mathbb{H}})$ be the hyperbolic plane (see Exercise 6.4 for an expression of the metric in the Poincaré disc model, when \mathbb{H}^2 is identified with the interior of the unit disc). Let p be a point in the hyperbolic plane. Compute the metric in polar coordinates around p . (Hint: Working in the Poincaré disc model, it suffices to only consider the case when p is at the origin, since any point $p \in \mathbb{D}^2$ can be mapped to any other point in \mathbb{D}^2 via an isometry. What are the geodesics in $(\mathbb{D}^2, g_{\mathbb{D}})$ emanating from the origin?)
- (c) How is the round metric $(\mathbb{S}^2, g_{\mathbb{S}^2})$ expressed in polar coordinates around a point $p \in \mathbb{S}^2$?
- (d) In all of the three Riemannian surfaces (S, g) considered above, compute the volume of the metric ball of radius $r > 0$ centered at any point $p \in (S, g)$ (due to the symmetry of the above spaces, the precise choice of p is irrelevant). Denoting with $B_{(S,g)}[r]$ the corresponding ball, show that

$$\text{Vol}(B_{(\mathbb{S}^2, g_{\mathbb{S}^2})}[r]) < \text{Vol}(B_{(\mathbb{R}^2, g_E)}[r]) < \text{Vol}(B_{(\mathbb{H}^2, g_{\mathbb{H}^2})}[r]).$$

7.3 *The Euler–Lagrange equations.* Let $\Omega \subset \mathbb{R}^n$ be an open domain and let $(t, x, v) \rightarrow \mathcal{L}(t, x, v) \in \mathbb{R}$ be a smooth function for $(t, x, v) \in [a, b] \times \Omega \times \mathbb{R}^n$. For any smooth map $f : [a, b] \rightarrow \Omega$, we will define its action with respect to \mathcal{L} by the relation

$$S_{\mathcal{L}}[f] \doteq \int_a^b \mathcal{L}(t, f(t), \frac{df}{dt}(t)) dt.$$

Let $F : (-\delta, \delta) \times [a, b] \rightarrow \Omega$ be a smooth variation of f , i.e. a smooth function satisfying

$$F(0, \cdot) = f(\cdot).$$

Show that

$$\begin{aligned} \frac{d}{ds} S_{\mathcal{L}}[F(s, \cdot)] \Big|_{s=0} &= \left[\frac{\partial F^i}{\partial s}(0, t) \cdot \partial_{v^i} \mathcal{L}(t, f(t), f'(t)) \right]_{t=a}^b \\ &\quad + \int_a^b \frac{\partial F^i}{\partial s}(0, t) \left(\partial_{x^i} \mathcal{L}(t, f(t), f'(t)) - \frac{d}{dt} (\partial_{v^i} \mathcal{L}(t, f(t), f'(t))) \right) dt, \end{aligned} \quad (1)$$

where $\partial_{x^i} \mathcal{L}$ and $\partial_{v^i} \mathcal{L}$ denote the corresponding partial derivative of the function

$$\mathcal{L} = \mathcal{L}(t; x^1, \dots, x^n; v^1, \dots, v^n)$$

with respect to the Cartesian coordinates x^i and v^i on Ω and \mathbb{R}^n , respectively (*Hint: After applying the $\frac{\partial}{\partial s}$ derivative inside the integral defining $S_{\mathcal{L}}$, perform an integration by parts on the term $\partial_s \partial_t F(s, t)$.*)

Deduce that if $f : [a, b] \rightarrow \Omega$ is a stationary point of $S_{\mathcal{L}}$ under all variations that fix the endpoints $t = a, b$ (i.e. $F(s, a) = f(a)$ and $F(s, b) = f(b)$), then f satisfies the *Euler–Lagrange equations*:

$$\partial_{x^i} \mathcal{L}(t, f(t), f'(t)) - \frac{d}{dt} (\partial_{v^i} \mathcal{L}(t, f(t), f'(t))) = 0.$$

Remark. In classical mechanics, $f : [a, b] \rightarrow \Omega$ can be thought of as the trajectory of a particle moving in the domain Ω for time $t \in [a, b]$. In this case, we can define \mathcal{L} to be the *Lagrangian* of the particle; in the case when the particle moves under the influence of a conservative force (i.e. one which can be written as minus the gradient of a potential), the Lagrangian takes the form of the difference between the kinetic and potential energy of the particle:

$$\mathcal{L}(t, x, v) = \frac{1}{2}mv^2 - U(x).$$

The functional $S_{\mathcal{L}}$ is called the *action* of the trajectory f . An equivalent way of formulating Newtonian mechanics is by assuming the *principle of least action*: The particle moves along a trajectory for which the action is stationary among all paths between $f(a)$ and $f(b)$. You can verify that, in the case of a conservative force, the Euler–Lagrange equations are the standard Newtonian equations of motion for the particle:

$$m \frac{d^2 f^i}{dt^2}(t) = -\partial_i U \circ f(t).$$

***7.4 Geodesics as stationary points of the energy functional.** We will now extend the formalism of the previous exercise to the realm of manifolds. Let (\mathcal{M}, g) be a smooth Riemannian manifold. Let $\mathcal{L} : T\mathcal{M} \rightarrow \mathbb{R}$ be a smooth function; for any $x \in \mathcal{M}$ and $v \in T_x \mathcal{M}$, we will denote with $\mathcal{L}(x, v)$ the value of \mathcal{L} at $(x, v) \in T\mathcal{M}$. For any smooth curve $\gamma : [a, b] \rightarrow \mathcal{M}$, we will define the action of γ with respect to \mathcal{L} by

$$S_{\mathcal{L}}[\gamma] \doteq \int_a^b \mathcal{L}[\gamma(t), \dot{\gamma}(t)] dt.$$

(a) Let $\gamma : [a, b] \rightarrow \mathcal{M}$ be a given curve and $\phi : (-\delta, \delta) \times [a, b] \rightarrow \mathcal{M}$ be a smooth variation of γ which is entirely contained in a coordinate chart (x^1, \dots, x^n) on \mathcal{M} ; we will denote with $\frac{\partial \phi_s}{\partial s}|_{s=0}$ the variation field along γ (as we did in class). Show that (1) also holds in this case, i.e.

$$\begin{aligned} \frac{d}{ds} S_{\mathcal{L}}[\phi_s]|_{s=0} &= \left[\partial_{v^i} \mathcal{L}(\gamma(t), \dot{\gamma}(t)) \cdot \frac{\partial \phi_s^i}{\partial s}|_{s=0}(t) \right]_{t=a}^b \\ &\quad + \int_a^b \left(\partial_{x^i} \mathcal{L}(\gamma(t), \dot{\gamma}(t)) - \frac{d}{dt} (\partial_{v^i} \mathcal{L}(\gamma(t), \dot{\gamma}(t))) \right) \cdot \frac{\partial \phi_s^i}{\partial s}|_{s=0}(t) dt, \end{aligned}$$

where, in the local coordinates $(x^1, \dots, x^n; v^1, \dots, v^n)$ on $T\mathcal{M}$ associated to (x^1, \dots, x^n) (recall that $v^i(V) = dx^i(V)$ for any $V \in \Gamma(\mathcal{M})$), $\partial_{x^i} \mathcal{L}$ and $\partial_{v^i} \mathcal{L}$ denote the partial derivatives of $\mathcal{L}(x^1, \dots, x^n; v^1, \dots, v^n)$ with respect to the corresponding variables.

Moreover, if γ is a stationary point for $S_{\mathcal{L}}$ for all variations ϕ_s with $\phi_s(a) = \gamma(a)$ and $\phi_s(b) = \gamma(b)$, then

$$\partial_{x^i} \mathcal{L}(\gamma(t), \dot{\gamma}(t)) - \frac{d}{dt} (\partial_{v^i} \mathcal{L}(\gamma(t), \dot{\gamma}(t))) = 0, \quad i = 1, \dots, n.$$

(b) Let us now examine the case when

$$\mathcal{L}(x, v) = \frac{1}{2} g|_x(v, v) \quad \text{for } x \in \mathcal{M}, v \in T_x \mathcal{M}$$

(this can be thought of as an extension of the Newtonian function for the kinetic energy in the setting of Riemannian manifolds). In this case, the action $S_{\mathcal{L}}$ is known as the *energy* functional (which we also saw in Ex. 2.1):

$$\mathcal{E}[\gamma] = \int_a^b g(\dot{\gamma}(t), \dot{\gamma}(t)) dt.$$

Show that if ϕ_s is a variation of a smooth curve $\gamma : [a, b] \rightarrow \mathcal{M}$, not necessarily contained in a single coordinate chart, then

$$\frac{d}{ds} \mathcal{E}[\phi_s]|_{s=0} = \left\langle \frac{\partial \phi_s}{\partial s}|_{s=0}, \dot{\gamma} \right\rangle_g|_{t=a}^b - \int_a^b \left\langle \frac{\partial \phi_s}{\partial s}|_{s=0}, \nabla_{\dot{\gamma}} \dot{\gamma} \right\rangle_g dt.$$

This is known as the 1st variation formula for the energy. (*Hint: Break up the variation into smaller intervals in t such that each one is contained inside a single coordinate chart.*) Deduce that if γ is a stationary point for the energy under all variations which fix the endpoints $\gamma(a), \gamma(b)$, then γ is a geodesic.

Remark. In contrast to the case of stationary curves for the length functional (which are reparametrizations of geodesics, not necessarily with constant speed), a reparametrization of a geodesic is not a stationary point for $\mathcal{E}[\gamma]$. Thus, $\mathcal{E}[\gamma]$ can be used to single out “properly parametrized” geodesics via a minimization process.

(c) For any $p \in \mathcal{M}$, let $\sigma : [a, b] \rightarrow \Omega_p \subset T_p \mathcal{M}$ be a smooth curve (Ω_p is the domain of definition of the exponential map \exp_p). Show that

$$\frac{d}{ds} (\|\sigma(s)\|_{g|_p}^2) = \langle d\exp_p|_{\sigma(s)} \dot{\sigma}(s), d\exp_p|_{\sigma(s)} \sigma(s) \rangle_g,$$

where we view $\sigma(s)$ both as point in Ω_p and a vector in $T_{\sigma(s)} \Omega_p$ (namely as the tangent vector of the line $t \rightarrow \sigma(s)t$ at $t = 1$). *Hint: What is the energy of the geodesic $t \rightarrow \exp_p(\sigma(s)t)$, $t \in [0, 1]$?* Deduce from the above formula the statement of the lemma of Gauss.