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7.1 Let (M, g) be a Riemannian manifold and p ∈ M. Let (x1, . . . , xn) be normal coordinates
centered at p. Show that the components of the metric g satisfy at p = (0, . . . , 0) the following
cyclic identity for any i, j, k, l ∈ {1, . . . , n}:

∂i∂jgkl|p + ∂j∂kgil|p + ∂k∂igjl|p = 0.

(Hint: recall that the Gauss lemma is equivalent to the statement that, in normal coordinates,
gijx

j = δijx
j. Di�erentiate this relation a few times and evaluate at (0, . . . , 0).)

Manipulating the above formula, show that

∂i∂jgkl|p = ∂k∂lgij|p.

7.2 In this exercise, we will compute the expression in polar coordinates of the three model geome-
tries in 2 dimensions (this was originally part of the last exercise last week).

(a) As a warm up, express in polar coordinates centered at the origin the �at metric gE on
R
2.

(b) Let (H2, gH) be the hyperbolic plane (see Exercise 6.4 for an expression of the metric in
the Poincare disc model, when H2 is identi�ed with the interior of the unit disc). Let p
be a point in the hyperbolic plane. Compute the metric in polar coordinates around p.
(Hint: Working in the Poincaré disc model, it su�ces to only consider the case when p
is at the origin, since any point p ∈ D

2 can be mapped to any other point in D
2 via an

isometry. What are the geodesics in (D2, gD) emanating from the origin?)

(c) How is the round metric (S2, gS2) expressed in polar coordinates around a point p ∈ S
2?

(d) In all of the three Riemannian surfaces (S, g) considered above, compute the volume of
the metric ball of radius r > 0 centered at any point p ∈ (S, g) (due to the symmetry
of the above spaces, the precise choice of p is irrelevant). Denoting with B(S,g)[r] the
corresponding ball, show that

Vol(B(S2,g
S2 )

[r]) < Vol(B(R2,gE)[r]) < Vol(B(H2,g
H2 )[r]).

7.3 The Euler�Lagrange equations. Let Ω ⊂ R
n be an open domain and let (t, x, v) → L(t, x, v) ∈ R

be a smooth function for (t, x, v) ∈ [a, b]×Ω× R
n. For any smooth map f : [a, b] → Ω, we will

de�ne it's action with respect to L by the relation

SL[f ]
.
=

� b

a

L(t, f(t), df
dt
(t)) dt.

Let F : (−δ, δ)× [a, b] → Ω be a smooth variation of f , i.e. a smooth function satisfying

F (0, ·) = f(·).
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Show that

d

ds
SL[F (s, ·)]

∣∣
s=0

=
[∂F i

∂s
(0, t)·∂viL(t, f(t), f ′(t))

]b
t=a

(1)

+

� b

a

∂F i

∂s
(0, t)

(
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

))
dt,

where ∂xiL and ∂viL denote the corresponding partial derivative of the function

L = L(t;x1, . . . , xn; v1, . . . , vn)

with respect to the Cartesian coordinates xi and vi on Ω and R
n, respectively (Hint: After

applying the ∂
∂s

derivative inside the integral de�ning SL, perform an integration by parts on
the term ∂s∂tF (s, t)).

Deduce that if f : [a, b] → Ω is a stationary point of SL under all variations that �x the
endpoints t = a, b (i.e. F (s, a) = f(a) and F (s, b) = f(b)), then f satis�es the Euler�Lagrange
equations :

∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

)
= 0.

Remark. In classical mechanics, f : [a, b] → Ω can be thought of as the trajectory of a particle
moving in the domain Ω for time t ∈ [a, b]. In this case, we can de�ne L to be the Lagrangian
of the particle; in the case when the particle moves under the in�uence of a conservative force
(i.e. one which can be written as minus the gradient of a potnetial), the Lagrangian takes the
form of the di�erence between the kinetic and potential energy of the particle:

L(t, x, v) = 1

2
mv2 − U(x).

The functional SL is called the action of the trajectory f . An equivalent way of formulating
Newtonian mechanics is by assuming the principle of least action: The particle moves along a
trajectory for which the action is stationary among all paths between f(a) and f(b). You can
verify that, in the case of a conservative force, the Euler�Lagrange equations are the standard
Newtonian equations of motion for the particle:

m
d2f i

dt2
(t) = −∂iU ◦ f(t).

*7.4 Geodesics as stationary points of the energy functional. We will now extend the formalism of
the previous exercise to the realm of manifolds. Let (M, g) be a smooth Riemannian manifold.
Let L : TM → R be a smooth function; for any x ∈ M and v ∈ TxM, we will denote with
L(x, v) the value of L at (x, v) ∈ TM. For any smooth curve γ : [a, b] → M, we will de�ne
the action of γ with respect to L by

SL[γ]
.
=

� b

a

L[γ(t), γ̇(t)] dt.
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(a) Let γ : [a, b] → M be a given curve and ϕ : (−δ, δ) × [a, b] → M be a smooth variation
of γ which is entirely contained in a coordinate chart (x1, . . . , xn) on M; we will denote
with ∂ϕs

∂s
|s=0 the variation �eld along γ (as we did in class). Show that (1) also holds in

this case, i.e.

d

ds
SL[ϕs]

∣∣
s=0

=
[
∂viL(γ(t), γ̇(t)) ·

∂ϕi
s

∂s
|s=0(t)

]b
t=a

+

� b

a

(
∂xiL(γ(t), γ̇(t))− d

dt

(
∂viL(γ(t), γ̇(t))

))
· ∂ϕ

i
s

∂s
|s=0(t) dt,

where, in the local coordinates (x1, . . . , xn; v1, . . . , vn) on TM associated to (x1, . . . , xn)
(recall that vi(V ) = dxi(V ) for any V ∈ Γ(M)), ∂xiL and ∂viL denote the partial deriva-
tives of L(x1, . . . , xn; v1, . . . , vn) with respect to the corresponding variables.

Moreover, if γ is a stationary point for SL for all variations ϕs with ϕs(a) = γ(a) and
ϕs(b) = γ(b), then

∂xiL(γ(t), γ̇(t))− d

dt

(
∂viL(γ(t), γ̇(t))

)
= 0, i = 1, . . . , n.

(b) Let us now examine the case when

L(x, v) = 1

2
g|x(v, v) for x ∈ M, v ∈ TxM

(this can be thought of as an extension of the Newtonian function for the kinetic energy in
the setting of Riemannian manifolds). In this case, the action SL is known as the energy
functional (which we also saw in Ex. 2.1):

E [γ] =
� b

a

g(γ̇(t), γ̇(t)) dt.

Show that if ϕs is a variation of a smooth curve γ : [a, b] → M, not necessarily contained
in a single coordinate chart, then

d

ds
E [ϕs]|s=0 =

〈∂ϕs

∂s
|s=0, γ̇

〉
g

∣∣b
t=a

−
� b

a

〈∂ϕs

∂s
|s=0,∇γ̇ γ̇

〉
g
dt.

This is known as the 1st variation formula for the energy.(Hint: Break up the variation
into smaller intervals in t such that each one is contained inside a single coordinate chart.)
Deduce that if γ is a stationary point for the energy under all variations which �x the
endpoints γ(a), γ(b), then γ is a geodesic.

Remark. In contrast to the case of stationary curves for the length functional (which are
reparametrizations of geodesics, not necessarily with constant speed), a reparametrization
of a geodesic is not a stationary point for E [γ]. Thus, E [γ] can be used to single out
�properly parametrized� geodesics via a minimization process.
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(c) For any p ∈ M, let σ : [a, b] → Ωp ⊂ TpM be a smooth curve (Ωp is the domain of
de�nition of the exponential map expp). Show that

d

ds

(
∥σ(s)∥2g|p

)
=

〈
d expp |σ(s)σ̇(s), d expp |σ(s)σ(s)

〉
g
,

where we view σ(s) both as point in Ωp and a vector in Tσ(s)Ωp (namely as the tangent
vector of the line t → σ(s)t at t = 1). Hint: What is the energy of the geodesic t →
expp(σ(s)t), t ∈ [0, 1]? Deduce from the above formula the statement of the lemma of
Gauss.
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