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7.1 Let (M, g) be a Riemannian manifold and p € M. Let (z!,...,2") be normal coordinates
centered at p. Show that the components of the metric g satisfy at p = (0,...,0) the following
cyclic identity for any 4,5, k,l € {1,...,n}:

&ngmp + ajak:gil|p + akaigjl|p = 0.

(Hint: recall that the Gauss lemma is equivalent to the statement that, in normal coordinates,

gijw’!

= 0;;27. Differentiate this relation a few times and evaluate at (0,...,0).)

Manipulating the above formula, show that

8z'aj9kl|p = akalgij|p-

7.2 In this exercise, we will compute the expression in polar coordinates of the three model geome-
tries in 2 dimensions (this was originally part of the last exercise last week).

(a)

(b)

As a warm up, express in polar coordinates centered at the origin the flat metric gg on
R2.

Let (H% gy) be the hyperbolic plane (see Exercise 6.4 for an expression of the metric in
the Poincare disc model, when H? is identified with the interior of the unit disc). Let p
be a point in the hyperbolic plane. Compute the metric in polar coordinates around p.
(Hint: Working in the Poincaré disc model, it suffices to only consider the case when p
is at the origin, since any point p € D? can be mapped to any other point in D* via an
isometry. What are the geodesics in (D?, gp) emanating from the origin?)

How is the round metric (52, gs2) expressed in polar coordinates around a point p € 527

In all of the three Riemannian surfaces (.5, g) considered above, compute the volume of
the metric ball of radius r > 0 centered at any point p € (S, g) (due to the symmetry
of the above spaces, the precise choice of p is irrelevant). Denoting with Bg g [r] the
corresponding ball, show that

VOl(B(gggSQ)[T]) < VOI(B([RQ’gE)[T‘]) < VOI(B(H279H2)[T]).

7.3 The Euler—Lagrange equations. Let  C R™ be an open domain and let (¢, z,v) — L(t,x,v) € R
be a smooth function for (¢,z,v) € [a,b] x @ x R". For any smooth map f : [a,b] — Q, we will
define it’s action with respect to £ by the relation

selfl = [ £t 7(0), D)

Let F': (=6,0) X [a,b] — Q be a smooth variation of f, i.e. a smooth function satisfying
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Show that
d OF
TSelF (s, )]y = [ (0.0-0uL(t, £(0). £(1))],, (1)

*7.4

b OF? ) d )
+ [ GO0 (0L 10, £1(0) = F(OuL( £, ) )
where 0,:L and 0, L denote the corresponding partial derivative of the function
L=L(tz". .. 2™ ")

with respect to the Cartesian coordinates z* and v* on Q and R", respectively (Hint: After

applying the 2 derivative inside the integral defining Sy, perform an integration by parts on
ying the 5- g g g y

the term 050, F (s,1)).
Deduce that if f : [a,b] — Q is a stationary point of S, under all variations that fix the
endpoints t = a,b (i.e. F(s,a) = f(a) and F(s,b) = f(b)), then f satisfies the Fuler—Lagrange

equations:
OuLlt, F(0), £/(1)) — 2 (DLl £(1), /(1)) = 0.

dt
Remark. In classical mechanics, f : [a,b] — € can be thought of as the trajectory of a particle
moving in the domain € for time ¢ € [a,b]. In this case, we can define £ to be the Lagrangian
of the particle; in the case when the particle moves under the influence of a conservative force
(i.e. one which can be written as minus the gradient of a potnetial), the Lagrangian takes the
form of the difference between the kinetic and potential energy of the particle:

1
L(t,x,v) = §m112 —Ul(x).
The functional S, is called the action of the trajectory f. An equivalent way of formulating
Newtonian mechanics is by assuming the principle of least action: The particle moves along a
trajectory for which the action is stationary among all paths between f(a) and f(b). You can
verify that, in the case of a conservative force, the Euler-Lagrange equations are the standard
Newtonian equations of motion for the particle:
dei
m——(t) = —&U o t).
(0 1)

Geodesics as stationary points of the energy functional. We will now extend the formalism of
the previous exercise to the realm of manifolds. Let (M, g) be a smooth Riemannian manifold.
Let £ : TM — R be a smooth function; for any x € M and v € T, M, we will denote with
L(z,v) the value of £ at (x,v) € TM. For any smooth curve 7 : [a,b] — M, we will define
the action of v with respect to £ by

b
&Mi/ﬁmmwmw
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(a)

Let v : [a,b] — M be a given curve and ¢ : (—0,9) X [a,b] = M be a smooth variation
of v which is entirely contained in a coordinate chart (z',...,2") on M; we will denote
with 22 |,_ the variation field along 7 (as we did in class). Show that (1) also holds in
this case, i.e.

D 5el0dly = [0 5(0) - 221 o(0)],

b = i
[ (0t60,30) - 5 @uLO0:3(0))) - G ol .

where, in the local coordinates (x!,... 2" vl ... v") on TM associated to (x!,... z")
(recall that v*(V) = dz*(V) for any V € I'(M)), 9,:L and 0,:L denote the partial deriva-
tives of L(zt, ..., 2™ v, ... v™) with respect to the corresponding variables.

Moreover, if « is a stationary point for S, for all variations ¢, with ¢s(a) = v(a) and
¢s(b) = v(b), then

) d ) ‘
Let us now examine the case when

L(x,v) = %g|x(v,v) forz e M,v e T,M

(this can be thought of as an extension of the Newtonian function for the kinetic energy in
the setting of Riemannian manifolds). In this case, the action S, is known as the energy
functional (which we also saw in Ex. 2.1):

Show that if ¢ is a variation of a smooth curve v : [a,b] — M, not necessarily contained
in a single coordinate chart, then

d 00, o[ 00
—& ss::_sza. - —s:,V-' dt.
S0 = (G2l 1, — [ (G0 Vi),
This is known as the 1°¢ variation formula for the energy.(Hint: Break up the variation
into smaller intervals in t such that each one is contained inside a single coordinate chart.)
Deduce that if v is a stationary point for the energy under all variations which fix the
endpoints y(a), v(b), then ~ is a geodesic.

Remark. In contrast to the case of stationary curves for the length functional (which are
reparametrizations of geodesics, not necessarily with constant speed), a reparametrization
of a geodesic is not a stationary point for £[y]. Thus, £[y] can be used to single out
“properly parametrized” geodesics via a minimization process.
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(¢c) For any p € M, let ¢ : [a,b] — Q, C T,M be a smooth curve (€2, is the domain of
definition of the exponential map exp,). Show that

d :
(o (3)llg,) = (dexp, o0 (), dexp, o5 (5)),,

where we view o(s) both as point in €2, and a vector in T}(4)€2, (namely as the tangent
vector of the line t — o(s)t at t = 1). Hint: What is the energy of the geodesic t —
exp,(a(s)t), t € [0,1]? Deduce from the above formula the statement of the lemma of
Gauss.
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